सीधे मुख्य कॉन्टेंट पर जाएं
डैशबोर्ड पर जाएं
क्या आपको जानकारी नहीं है कि कहां से शुरू करना है? अपने हिसाब से सुझाव पाने के लिए, छोटे से क्विज़ में हिस्सा लें.
8 में से 1 लेसन
क्या मशीन लर्निंग और AI एक ही चीज़ है?
5 मिनट इन लेसन को पूरा करना बाकी है

क्या मशीन लर्निंग और AI एक ही चीज़ है?

2.1.png

AI परिदृश्य के भीतर मशीन लर्निंग का विहंगम दृश्य देखें।

2.1.png

मशीन लर्निंग क्या है?

2.1.jpg

जैसा कि कृत्रिम बुद्धि के क्षेत्र में अधिकांश शब्दावली के साथ है, मशीन लर्निंग की कोई अद्वितीय परिभाषा नहीं है।


साधारण शब्दों में, ML प्रश्नों का उत्तर देने के लिए डेटा का उपयोग करती है। अधिक औपचारिक रूप से, यह एल्गोरिदम के उपयोग को संदर्भित करता है, जो डेटा से पैटर्न सीखता है और ऐसा करने के लिए स्पष्ट रूप से प्रोग्राम किए बिना कामों को करने में सक्षम होता है।  


इसके अलावा, मशीन लर्निंग सिस्टम्स को परिभाषित करने वाली विशेषता यह है कि वे अनुभव और डेटा के साथ अपने निष्पादन में सुधार करते हैं। या अन्य शब्दों में: वे सीखते हैं।

2.1.jpg

मशीन लर्निंग का AI से क्या संबंध है?

2.2

मशीन लर्निंग, प्रौद्योगिकियों के संग्रह का भाग है, जो व्यापक शब्द "कृत्रिम बुद्धि" (AI) के अंतर्गत समूहीकृत है।


AI और मशीन लर्निंग की अवधारणाओं का अकसर एक-दूसरे के बदले उपयोग किया जाता है, लेकिन वास्तव में मशीन लर्निंग को AI के सबफ़ील्ड के रूप में विचार करना अधिक सही है – जो खुद कंप्यूटर विज्ञान का सबफ़ील्ड है।

अलग-अलग लोगों के लिए AI का अर्थ अलग-अलग है, लेकिन हम कह सकते हैं कि कृत्रिम बुद्धि का तात्पर्य मशीनों की व्यापक अवधारणा से है, जो उन कामों को करने में सक्षम हैं, जिन्हें सामान्य रूप से मानव बुद्धि की आवश्यकता होती है।


उस संदर्भ में, मशीन लर्निंग उन विशिष्ट एप्लिकेशन को संदर्भित करती है, जो मॉडल को स्वतंत्र रूप से दिए गए काम करने के लिए प्रशिक्षित करने के लिए डेटा का उपयोग करती हैं और जो अनुभव से सीखती हैं। 

2.2

AI और मशीन लर्निंग: थोड़ा इतिहास

79492216-876bba80-7fd4-11ea-8db0-173665bafdb3.jpg

AI और मशीन लर्निंग हाल के वर्षों में चर्चित शब्द बन गए हैं। लेकिन ये विषय नए नहीं हैं। वैज्ञानिक पिछले काफ़ी समय से AI और ML पर काम कर रहे हैं। 

कृत्रिम बुद्धि पर सबसे पहले 1950 के बाद के दशक में चर्चा हुई थी। यह शब्द अमरीकी कंप्यूटर वैज्ञानिक जॉन मैकार्थी ने 1956 में डार्टमाउथ कॉलेज, न्यू हैम्पशायर में कार्यशाला में गढ़ा था।

तब से AI का बहुत विकास हुआ है और इसने सुनहरे और अँधरे दोनों दिन देखे हैं। मशीन लर्निंग ने 1980 के बाद के दशक में दृश्य में प्रवेश किया, लेकिन यह केवल 2010 के बाद के दशक में हुआ कि इस क्षेत्र में बहुत तेजी से विकास शुरू हुआ। गियर के इस बदलाव की व्याख्या क्या करता है?

79492216-876bba80-7fd4-11ea-8db0-173665bafdb3.jpg

अब सभी ML और AI की बात क्यों कर रहे हैं?

2.4.jpg

पिछले दशक में, दो प्रमुख कारकों ने AI के क्षेत्र में महत्वपूर्ण विकास में योगदान किया है:


पहला, हर मिनट भारी मात्रा में डेटा बनाया जा रहा है। मशीनों को ‘सीखने’ के लिए डेटा की आवश्यकता होती है और बढ़ती उपलब्धता का अर्थ है कि मौजूदा मॉडल के प्रशिक्षण को बेहतर बनाने के लिए बड़े डेटासेट्स का उपयोग किया जा सकता है और यह भी कि उन मॉडल्स का नए फ़ील्ड्स में परीक्षण और लागू किया जा सकता है।


दूसरा कारक प्रसंस्करण गति में हाल ही में हुई प्रगति से संबंधित है, जिससे कंप्यूटर इस सारी जानकारी को और अधिक जल्दी समझ लेते हैं। इससे प्रौद्योगिकी कंपनियाँ और इस क्षेत्र के अन्य खिलाड़ी शोध और विकास में बड़े और बड़े निवेश को सही ठहरा पा रहे हैं।

वर्तमान गति पर, AI जल्द ही थोड़ी कम कृत्रिम, और बहुत अधिक बुद्धिमान हो जाएगी।

2.4.jpg

क्या आपको मशीनों के अधिक बुद्धिमान होने से चिंता होनी चाहिए?

2.5.jpg

इस बारे में मौलिक ग़लतफ़हमी है कि AI पर अनुसंधान से क्या प्राप्त करने की कोशिश की जा रही है। हम 2001 स्पेस ओडिसी में HAL 9000 कंप्यूटर जैसी खुद सोचने वाली मशीनों के कहीं आसपास नहीं हैं और न ही आपको निकट भविष्य में आपके काम लेने वाले रोबोट से डर लगना चाहिए।


ऐसा तभी हो सकता है जब हम कभी कृत्रिम सामान्य बुद्धि (AGI) तक पहुँच जाएँ: प्राकल्पना-परक मशीनें, जो पर्यवेक्षण के बिना मानव-सदृश अंदाज़ में किसी भी बौद्धिक काम को संभाल सकती हैं। लेकिन आज की स्थिति के अनुसार, यह आज भी विज्ञान-कथा के दायरे में ही है।

उदाहरण के लिए कुछ कंपनियों और अनुसंधान प्रयोगशालाओं –  के अपवाद के साथ DeepMind और OpenAI – वर्तमान AI अनुसंधान संकीर्ण बुद्धि पर फ़ोकस करता है, जिसमें मशीनों को सिखाने में स्वतंत्र रूप से विशिष्ट कामों को संभालने के लिए बड़ी प्रगति हो रही है।

2.5.jpg

मशीन लर्निंग: चर्चित शब्दों से परे

2.6.jpg

मशीन लर्निंग की लोकप्रियता से कभी-कभी यह अलग करना मुश्किल हो जाता है कि क्या वास्तविक है और क्या बस शोर है। आधिकारिक तौर पर सहमति की परिभाषा की कमी, विज्ञान-कल्पना की विरासत, और AI-संबंधित विषयों पर साक्षरता का सामान्य रूप से निम्नलिखित स्तर सभी इसके योगदान कारक हैं।


आशा है, इस पाठ ने आपको इसकी बेहतर समझ दी है कि मशीन लर्निंग क्या है और यह कृत्रिम बुद्धि से कैसे संबंधित है। लेकिन यहाँ तक कि मशीन लर्निंग के क्षेत्र के भीतर भी विभिन्न प्रकार के मॉडल और उपागम हैं, जिन्हें पहचानना महत्वपूर्ण है।


यह अगले पाठ का विषय है।

2.6.jpg
बधाई हो! आपने अभी-अभी इसे पूरा किया क्या मशीन लर्निंग और AI एक ही चीज़ है? हां, इसकी प्रक्रिया चल रही है
आपके लिए सुझाव
आप इस लेसन से किस हद तक संतुष्ट हैं?
आपके सुझाव, राय या शिकायत से, हमें अपने लेसन को और बेहतर बनाने में मदद मिलेगी!
क्या आपको यह पेज छोड़ना है और अपनी प्रोग्रेस का डेटा मिटाना है?
इस पेज को छोड़ने पर, मौजूदा लेसन के लिए आपकी प्रोग्रेस का पूरा डेटा मिट जाएगा. क्या आपको वाकई इस पेज को छोड़कर अपनी प्रोग्रेस का डेटा मिटाना है?