Przejdź do głównej treści
Otwórz panel
Nie wiesz, od czego zacząć? Rozwiąż krótki quiz, aby otrzymać spersonalizowane rekomendacje.
Lekcja 1 z 7
Czym jest uczenie maszynowe?
Uczenie maszynowe w praktyce
Google Cloud AutoML Vision
Przygotowanie danych
Szkolenie modelu uczenia maszynowego
Ocena i test
check_box_outline_blank Hands-on Machine Learning: Take the Quiz
Kurs
0% zakończono
5 minut aby zakończyć

Czym jest uczenie maszynowe?

image41_3.png

Uczenie maszynowe dla dziennikarzy. Czego uczestniczy nauczą się podczas tego kursu

image41_3.png

Dziennikarstwo i uczenie maszynowe

image41_2.png

W jaki sposób dziennikarze mogą wykorzystać uczenie maszynowe (ML) do usprawnienia swojej pracy dziennikarskiej? To pytanie będziemy rozważać podczas tego kursu.


Kurs pomoże uczestnikom rozpoznać sytuacje, w których uczenie maszynowe będzie właściwym narzędziem wspomagającym pracę dziennikarską i nauczy ich szkolenia modelu uczenia maszynowego.


Jest on kontynuacją kursu Wprowadzenie do uczenia maszynowego. Zachęcamy osoby, które nie odbyły tego kursu, do odbycia powyżej wspomnianego kursu przed rozpoczęciem niniejszego.

image41_2.png

Na czym polega kurs

image31_2.png

Wprowadzenie do uczenia maszynowego to kurs, który bada potencjał, jaki daje organizacjom prasowym uczenie maszynowe i wyjaśnia, w jaki sposób dziennikarze mogą odpowiedzialnie je wykorzystywać do poprawy jakości przekazywanych informacji.


W tym kursie pójdziemy tez o krok dalej i pokażemy, na podstawie prawdziwego przykładu, który wprowadzimy w następnej lekcji, jakie wyniki mogą osiągnąć dziennikarze stosujący uczenie maszynowe. Ten kurs jest dla każdego, kto chce dowiedzieć się, jak działa uczenie maszynowe w praktyce i jak można je wykorzystać w swoich reportażach.

Czy uczestnicy, którzy ukończą ten kurs, będą ekspertami w projektowaniu uczenia maszynowego i badaczami ds. danych? Przykro nam, ale nie. Niemniej z pewnością każdy, kto ukończy ten kurs, będzie znać zasady działania większości procesów uczenia maszyn, a także będzie w stanie prowadzić własne eksperymenty.

image31_2.png

Definicja uczenia maszynowego

image21_2.png

Zanim przejdziemy dalej, upewnijmy się, że wiemy, o czym mówimy. Czym jest uczenie maszynowe?


Uczenie maszynowe należy do zbioru technologii znanych pod wspólnym pojęciem „sztuczna inteligencja” (SI). Jak w przypadku większości terminów z dziedziny sztucznej inteligencji, nie istnieje jednoznaczna definicja uczenia maszynowego.


Upraszczając, uczenie maszyn to technologia, która odpowiada na pytania korzystając z dostarczonych danych. Bardziej formalnie dotyczy stosowania algorytmów, które uczą się schematów z danych i są w stanie wykonywać zadania bez wyraźnego zaprogramowania ich do tego celu. 


Co więcej, cechą charakterystyczną systemów uczenia maszynowego jest to, że zwiększają one swoją skuteczność dzięki danym i doświadczeniu. Innymi słowy: uczą się

image21_2.png

Istnieją różne sposoby uczenia się

image45_2.png

Warto pamiętać, że istnieje wiele różnych podejść do uczenia maszynowego. Zazwyczaj różnią się one rodzajem problemów, które starają się rozwiązać, jak również rodzajem i ilością informacji zwrotnych przekazywanych przez programistę.


Ogólnie rzecz biorąc, uczenie maszynowe możemy podzielić na trzy podobszary: 1) Uczenie z nadzorem; 2) Uczenie bez nadzoru; 3) Uczenie przez wzmacnianie. Więcej informacji na temat różnic między tymi trzema kategoriami można znaleźć w kursie Wprowadzenie do uczenia maszyn.


W tym kursie będziemy koncentrować się na uczeniu z nadzorem. Oznacza to, że będziemy używać przykładów opatrzonych etykietami do uczenia algorytmu, którego zadaniem będzie automatyczne przypisanie poprawnego etykiety do każdego nowego przykładu, jaki zostanie mu przedstawiony do analizy.

image45_2.png

Odkrywanie potencjału uczenia maszynowego

image47_2.png

Teraz, po zapoznaniu się z podstawami, jesteśmy gotowi zakończyć wprowadzenie i przejść dalej.


W kolejnych dwóch lekcjach przedstawimy studium przypadku, które będzie podstawą do naszego ćwiczenia na konkretnym przykładzie dziennikarskim, a także opiszemy algorytm, który pomoże nam zrozumieć dynamikę większości procesów uczenia maszynowego.


Dalsze lekcje przyjmą formę praktycznego poradnika opisującego poszczególne czynności krok po kroku: dowiemy się, jak pozyskiwać i przygotowywać dane, jak szkolić model uczenia maszynowego, a także jak testować i oceniać jego efektywność.


Ostatnia lekcja będzie stanowiła podsumowanie najważniejszych koncepcji i pomoże rozumieć, jak stosować je w codziennej pracy dziennikarskiej. Polecimy tu również więcej zasobów, które będą przydatne w dalszym zgłębianiu świata uczenia maszynowego.

image47_2.png
Gratulacje! To już koniec Czym jest uczenie maszynowe? in progress
Recommended for you
Jak oceniasz tę lekcję?
Twoja opinia pomoże nam w ciągłym udoskonalaniu naszych lekcji.
Wyjść i wyzerować postęp?
Jeśli opuścisz tę stronę, utracisz cały postęp w bieżącej lekcji. Czy na pewno chcesz kontynuować i wyzerować postęp?