แนวทางต่าง ๆ เกี่ยวกับระบบการเรียนรู้ของเครื่องจักร
เรียนรู้วิธีการแยกความแตกต่างของระบบการเรียนรู้ของเครื่องจักรแบบต่าง ๆ
มีอยู่หลายวิธีในการเรียนรู้
มีอยู่หลายวิธีสำหรับเครื่องจักรในการเรียนรู้แนวทางต่าง ๆ ของ ML มักแยกจากลักษณะของปัญหาที่ต้องการแก้ไข รวมทั้งประเภทและระดับผลตอบรับที่ได้จากโปรแกรมเมอร์
ในภาพรวม เราสามารถแบ่งการเรียนรู้ของเครื่องจักรออกเป็นสามส่วนย่อย ๆ ได้แก่
- การเรียนรู้แบบมีการกำกับดูแล
- การเรียนรู้แบบไม่มีการกำกับดูแล
- การสั่งสมการเรียนรู้
แม้จะดูเป็นการจำแนกประเภทที่ชัดเจน แต่การกำหนดวิธีแบบฟันธงลงไปอาจไม่ได้ง่ายเสมอไปมาดูกันว่าหมวดหมู่เหล่านี้มีความแตกต่างกันอย่างไรบ้าง
การเรียนรู้แบบมีการกำกับดูแล
สมมติว่าคุณต้องการสอนเครื่องจักรให้สามารถแยกสุนัขออกจากแมวคุณจะต้องป้อนข้อมูลภาพระหว่าง “แมว” และ “สุนัข”เมื่อศึกษาข้อมูลจากตัวอย่างที่ได้ อัลกอริทึมนี้จะเรียนรู้ในการแยกแยะแมวออกจากสุนัข และสามารถติดฉลากกำกับภาพใหม่ ๆ ที่ได้รับเพื่อการวิเคราะห์ข้อมูลอย่างถูกต้อง
ในระบบการเรียนรู้แบบมีการกำกับดูแล เครื่องจักรจะต้องได้รับข้อมูลตัวอย่างพร้อมรายละเอียดกำกับเพื่อใช้ในการเรียนรู้ตัวอย่างเหล่านี้จะใช้เพื่อพัฒนาอัลกอริทึมสำหรับแยกแยะข้อมูลให้ถูกต้องโดยอัตโนมัติ
ในด้านงานข่าว ระบบการเรียนรู้แบบมีการกำกับดูแลจะอาศัยการพัฒนาอัลกอริทึมเพื่อค้นหาเอกสารที่อาจเป็นประเด็นที่น่าสนใจในการตรวจสอบแนวทางนี้เป็นประโยชน์อย่างยิ่งในการตรวจสอบสำหรับนักข่าวที่ต้องตรวจดูเอกสารเป็นจำนวนมาก
การเรียนรู้แบบไม่มีการกำกับดูแล
ในส่วนของการเรียนรู้แบบไม่มีการกำกับดูแล ตัวอย่างข้อมูลที่จัดให้แก่เครื่องจักรจะไม่มีการทำรายละเอียดกำกับไว้อัลกอริทึมนี้จะต้องทำการเรียนรู้ด้วยตัวเองเพื่อแยกแยะรูปแบบของข้อมูล เช่น เพื่อจัดกลุ่มระเบียนข้อมูลที่มีลักษณะคล้าย ๆ กัน
กล่าวคือ อัลกอริทึมนี้จะถูกฝึกสอนให้ค้นหาโครงสร้างบางอย่างในชุดข้อมูลที่ไม่มีรายละเอียดกำกับซึ่งคุณสั่งให้ทำการวิเคราะห์การทำงานแบบนี้จะถูกใช้งานโดยธุรกิจต่าง ๆ เพื่อให้เข้าใจลูกค้าได้ดียิ่งขึ้น เช่น โดยการจัดกลุ่มเป็นหมวดหมู่ต่าง ๆ เพื่อให้ทราบพฤติกรรมการจัดซื้อที่ใกล้เคียงกัน
ในวงการข่าว เทคนิคเหล่านี้ถูกใช้โดยนักข่าวสอบสวนเพื่อเจาะลึกกรณีการหลีกเลี่ยงภาษีและเพื่อช่วยให้นักข่าวด้านการเงินสามารถเชื่อมโยงข้อมูลการบริจาคต่าง ๆ เข้าด้วยกัน
การสั่งสมการเรียนรู้
การเรียนรู้แบบที่สามเป็นการเรียนรู้แบบสั่งสมการเรียนรู้ซึ่งจะคล้าย ๆ กับการเรียนรู้แบบไม่มีการกำกับดูแล กล่าวคือไม่ต้องมีการจัดหารายละเอียดกำกับข้อมูลแต่จะเน้นที่การเรียนรู้ว่าควรจะดำเนินการอย่างไรผ่านการลองผิดลองถูก หรือโดยการหัดทำผิดพลาดนั่นเองในเบื้องต้นอัลกอริทึมนี้จะทำงานแบบสุ่มเพื่อพิจารณาองค์ประกอบแวดล้อมต่าง ๆ และเรียนรู้ไปเรื่อย ๆ เมื่อเริ่มทำขั้นตอนใดถูกมากขึ้นเรื่อย ๆ
การสั่งสมการเรียนรู้นี้มักใช้เพื่อสอนเครื่องในการเล่นเกม ตัวอย่างที่เห็นได้ชัดที่สุดคือ AlphaGo โปรแกรมคอมพิวเตอร์ที่พัฒนาโดย DeepMind ในปี 2016 ที่สามารถเอาชนะ Lee Sedol มือวางอันดับหนึ่งโกะของโลก
การใช้งานในด้านงานข่าวยังไม่ค่อยมีให้เห็นนัก แต่การสั่งสมการเรียนรู้นี้สามารถนำไปใช้สำหรับการทดสอบพาดหัวข่าวได้
แล้วการเรียนรู้ในเชิงลึกล่ะ
การเรียนรู้ในเชิงลึกคือการเรียนรู้อีกประเภทที่เพิ่งเป็นที่รู้จักเมื่อไม่กี่ปีที่ผ่านมาโดยอาศัยพลังการประมวลผลของคอมพิวเตอร์ที่เพิ่มมากขึ้นตามที่เราได้กล่าวไปก่อนหน้านี้นี่ถือเป็นสาขาย่อยของระบบการเรียนรู้ของเครื่องจักร แต่จะแตกต่างจากแนวทางที่เราได้ศึกษากันไป โดยการเรียนรู้ในเชิงลึกจะมีความซับซ้อนและละเอียดมากกว่า (ตามชื่อ) และคาบเกี่ยวกับตัวแบบทางคณิตศาสตร์ในการทำงาน
ความซับซ้อนของตัวแบบการทำงานนี้เป็นการใช้ข้อมูลวิเคราะห์เชิงซ้อนเพื่อให้อัลกอริทึมสามารถเรียนรู้โครงสร้างที่ซับซ้อนมากขึ้นไปได้เรื่อย ๆการเรียนรู้ในเชิงลึกมีความเชื่อมโยงกับเครือข่ายประสาทประดิษฐ์ ซึ่งสถาปัตยกรรมนี้ได้แรงบันดาลใจมาจากร่างกายมนุษย์ เช่น การประมวลผลข้อมูลภาพในสมองของเราจากการมองเห็น
รูปแบบการเรียนรู้แบบต่าง ๆ...มีประโยชน์อะไรบ้าง
การเรียนรู้แบบมีการกำกับดูแล ไม่มีการกำกับดูแล แบบสั่งสมความรู้และแบบเครือข่ายระบบประสาท...ฟังแล้วดูน่าปวดหัวไม่น้อย
บทเรียนนี้ไม่ได้มีเป้าหมายเพื่อให้คุณเกิดความสับสนแต่อย่างใดสิ่งสำคัญคือการเข้าใจเกี่ยวกับความซับซ้อนของระบบการเรียนรู้ของเครื่องจักรและส่วนการทำงานย่อยของระบบนี้ แต่หากคุณขี้เกียจที่จะเจาะลึกเกี่ยวกับศาสตร์ด้านสารสนเทศนี้ สิ่งที่คุณยังสามารถเรียนรู้ได้จากบทเรียนนี้คือ ปัญหาต่าง ๆ ที่ต้องใช้วิธีการแก้ไขที่แตกต่างกัน และแนวทางด้าน ML แบบต่าง ๆ เพื่อให้สามารถปฏิบัติงานได้อย่างถูกต้องและมีประสิทธิภาพ
ในบทเรียนถัดไป เราจะพิจารณาที่สถานการณ์ต่าง ๆ ในการทำงานของคุณที่อาจสามารถใช้ระบบการเรียนรู้ของเครื่องจักรได้หลังจากนั้นเราจะพิจารณากระบวนการต่าง ๆ เพื่อให้เครื่องจักรสามารถเรียนรู้ รวมทั้งอคติต่าง ๆ ที่เกิดขึ้น และเคล็ดลับในการจัดการ
-
-
Introduction to AI for Journalists
บทเรียนLearn about Google's approach to AI and how our products can support newsrooms. -
How to add them to your site
บทเรียนThere are two ways to add Web Stories to your site, regardless of the CMS you use to maintain it. Each approach is simple, intuitive, and poised to make Web Stories a vital part of your content strategy going forward.