การสืบเรื่องราวด้วยแมชชีนเลิร์นนิง
คุณจะใช้แมชชีนเลิร์นนิงในการรายงานข่าวได้อย่างไร
แมชชีนเลิร์นนิงเพื่อการสืบเรื่องราว: กรณีศึกษา
ปี 2010 ราคาอำพันในตลาดโลกเริ่มเพิ่มสูงขึ้นอย่างรวดเร็ว เนื่องจากมีความต้องการมาก ในปีต่อๆ มา พื้นที่บางส่วนในภาคตะวันตกเฉียงเหนือของประเทศยูเครนซึ่งมีอำพันอุดมสมบูรณ์จึงดึงดูดความสนใจจากทั้งในท้องถิ่นและจากต่างชาติ จนกลายเป็นที่เกิดเหตุ “ตื่นอำพัน” อย่างผิดกฎหมายและเป็น “ดินแดนตะวันตก” แห่งใหม่
พื้นที่ป่าและที่ดินเพื่อการเกษตรนับร้อยเฮกตาร์กลายเป็นพื้นดินแห้งแล้งไร้ชีวิตเหมือนโลกพระจันทร์ โดยมีกิจกรรมการทำเหมืองเกิดขึ้นหนาแน่นที่สุดตั้งแต่ปี 2014 ถึง 2016 แต่ยังคงดำเนินไปต่อเนื่องในปีต่อๆ มา
การสืบเรื่องราวของ Texty “โรคเรื้อนของผืนดิน”
ปี 2018 สำนักข้อมูลข่าวของยูเครนชื่อ Texty ได้เผยแพร่ผลการสืบเรื่องราว Leprosy of the Land ที่พวกเขาใช้เทคนิคแมชชีนเลิร์นนิงตรวจหากรณีการทำเหมืองอำพันผิดกฎหมายทั่วยูเครน
อันดับแรก อัลกอริทึมได้แบ่งส่วนต่างๆ ของภาพถ่ายดาวเทียมออกเป็นส่วนย่อยที่มองเห็นได้ว่าเหมือนกัน ดังนั้นถ้าภาพถ่ายมีสีเขียวครึ่งหนึ่งและอีกครึ่งเป็นทุ่งดิน อัลกอริทึมจะแยกภาพออกเป็นสองส่วนย่อย
อัลกอริทึมอีกแบบค้นหาว่าส่วนย่อยใดคล้ายตัวอย่างของการทำเหมืองอำพันที่มีอยู่แล้วมากที่สุด โดยมีรูปแบบหลุมในดินที่ชัดเจนเหมือนรอยแผลฝีดาษ
สุดท้าย นักข่าวตรวจสอบตัวอย่างที่อัลกอริทึมพบเพื่อให้แน่ใจว่าแท้จริงแล้วสิ่งที่อัลกอริทึมคิดว่าดูเหมือนการทำเหมืองอำพันไม่ใช่อย่างอื่น เช่น การตัดไม้ทำลายป่า
การค้นหาตัวอย่างการทำเหมืองอำพันผิดกฎหมาย
ในหลักสูตรนี้ เราจะเน้นวิธีการที่ Texty ใช้ฝึกอัลกอริทึมให้จำแนกภาพตัวอย่างการทำเหมืองอำพันผิดกฎหมาย จากภาพถ่ายดาวเทียมจำนวนมหาศาลที่อัลกอริทึมอีกแบบแบ่งเป็นส่วนย่อยมาให้ก่อนแล้ว
อย่างที่กล่าวไว้ในบทเรียนแรก นั่นหมายถึงว่าเราจะทดสอบด้วยการเรียนรู้แบบมีการกำกับดูแล คุณจะได้ทราบว่าอัลกอริทึมเรียนรู้จากตัวอย่างที่มีป้ายกำกับอย่างไร เพื่อจดจำรูปแบบเดียวกันในภาพถ่ายต่างๆ ที่อัลกอริทึมไม่เคยเห็นมาก่อน
และจะได้ทราบด้วยว่าคุณจะเลียนแบบกระบวนการนี้เพื่อเรื่องราวของคุณเองได้อย่างไร ตั้งแต่การค้นหาตัวอย่างที่คุณต้องใช้ จนถึงการฝึกรูปแบบแมชชีนเลิร์นนิงให้จำแนกสิ่งที่คุณกำลังมองหา และจากนั้นจึงทดสอบและประเมินผลรูปแบบให้แน่ใจว่าจะได้ผลลัพธ์ที่เชื่อถือได้
ML คือเครื่องมือที่ใช่สำหรับปัญหานี้หรือไม่
แต่ทำไมแมชชีนเลิร์นนิงจึงเป็นเครื่องมือที่ถูกต้องในการหาข้อมูลที่ Texty มองหา
ในการเขียนโปรแกรมแบบคลาสสิก คุณต้องระบุคำสั่งทีละขั้นตอนให้คอมพิวเตอร์ทำตาม ในขณะที่วิธีนี้ได้ผลสำหรับการแก้ปัญหาหลากหลายแบบ แต่ไม่พอสำหรับงานจำแนกตัวอย่างการทำเหมืองอำพันผิดกฎหมายจากภาพถ่ายดาวเทียมจำนวนมหาศาล มีองค์ประกอบที่มองเห็นได้มากมายที่คอมพิวเตอร์ต้องพิจารณาจนเป็นไปไม่ได้ที่จะสร้างชุดของกฎทีละขั้นตอนให้สามารถสอนซอฟต์แวร์แยกแยะระหว่างตัวอย่างจริงของการทำเหมืองอำพันผิดกฎหมายกับสิ่งที่อาจแค่ดูคล้ายกัน
โชคดีที่ระบบแมชชีนเลิร์นนิงอยู่ในตำแหน่งที่ดีในการแก้ปัญหานี้
เน้นกระบวนการ
อย่าลืมว่าสิ่งที่คุณจะเรียนรู้ในหลักสูตรนี้ นั่นคือ วิธีสังเกตการทำเหมืองอำพันผิดกฎหมาย เป็นเพียงตัวอย่างเดียว ด้วยกระบวนการเดียวกันนี้ สามารถใช้แมชชีนเลิร์นนิงทำงานข่าวต่างๆ มากมาย และแม้แต่นำไปประยุกต์ใช้เพื่อวิเคราห์เนื้อหาประเภทต่างๆ ก็ได้ ไม่เฉพาะรูปภาพ เราจะดูกรณีการใช้งานอื่นๆ อีกตอนท้ายหลักสูตร ระหว่างทำแบบฝึกหัด อย่าลืมเน้นกระบวนการมากกว่ากรณีศึกษาที่เฉพาะเจาะจง
คราวนี้ก่อนเราจะเริ่มทำแบบฝึกหัดจริง เราต้องให้เวลาสองสามนาทีเพื่อทำความรู้จักและตั้งค่าเครื่องมือที่เราจะหัดใช้ในบทเรียนต่อไป นั่นคือ Google Cloud AutoML Vision
-
-
How to add them to your site
บทเรียนThere are two ways to add Web Stories to your site, regardless of the CMS you use to maintain it. Each approach is simple, intuitive, and poised to make Web Stories a vital part of your content strategy going forward. -
วิดีโอ: เครื่องมือของ Google สำหรับผู้ตรวจสอบข้อเท็จจริง
บทเรียนสำรวจเครื่องมือดิจิทัลที่ออกแบบมาโดยเฉพาะสำหรับผู้ตรวจสอบข้อเท็จจริงและนักข่าว