Google Cloud AutoML Vision
Scopri come configurare AutoML Vision per prepararti all'esercizio del corso
Classificazione delle immagini con il Machine Learning
As mentioned in the previous lesson, Texty used two different algorithms in the production of Leprosy of the Land.
Dopo che il primo algoritmo ha permesso al team di suddividere sezioni di immagini satellitari delle foreste ucraine in sottosezioni visivamente uniformi, c'è stato bisogno di un secondo algoritmo che potesse identificare quali sezioni di immagini satellitari somigliassero maggiormente agli esempi di immagini esistenti di estrazione dell'ambra. In poche parole, serviva un "classificatore personalizzato".
Usare esempi etichettati per imparare
SÌ: questa immagine include elementi visivi coerenti con i modelli che di solito mostrano l'attività di estrazione dell'ambra
" e "
NO: questa immagine non include elementi visivi che suggeriscono l'attività di estrazione dell'ambra
Scegliere un algoritmo
Come ha affermato Jeremy Merrill di Quartz AI Studio nel suo A Crash Course for Journalists In Classifying Text with Machine Learning, "per le tue esigenze giornalistiche puoi scegliere qualunque algoritmo, purché tu scelga l’algoritmo che vada nella giusta direzione”.
AutoML Vision non è l'unico strumento che potremmo utilizzare per raggiungere l'obiettivo desiderato. In realtà, non è l'algoritmo che Texty ha utilizzato durante la sua indagine. Il motivo per cui utilizziamo AutoML Vision in questo corso è la sua accessibilità: non è necessario disporre di competenze di programmazione per apprenderne il funzionamento e per addestrare un modello dati ad alte prestazioni.
If you do have coding skills already and you want to dig deeper, have a look at fast.ai's Practical Deep Learning for Coders.
Configurazione del tuo account Google Cloud
Per poter utilizzare AutoML Vision, è necessario creare un account Google Cloud. Al momento della registrazione ti verrà assegnato un credito di 300$ che ti consentirà di iniziare i tuoi esperimenti. Ciascun esercizio di addestramento del modello di apprendimento automatico, come quello che eseguiremo in questo corso, costa circa 20$. Segui questa guida passo passo:
Clicca su "Prova gratuitamente" in "Inizia con Google Cloud Platform" e segui le istruzioni per creare il tuo account.
Quando hai creato l'account, apri il menu di navigazione sul lato sinistro della pagina e scorri fino in fondo per trovare "Vision" nella sezione "Intelligenza artificiale". Clicca su “Pannello di controllo”
Ora hai effettuato l'accesso al tuo spazio di lavoro, che mostra gli strumenti "Vision" di Google Cloud, incluso quello che utilizzeremo: “Classificazione delle immagini” Clicca su "Set di dati" sul lato sinistro del menu di navigazione
Quindi clicca su "Abilita API AutoML". Il processo potrebbe richiedere alcuni secondi. Infine, clicca su “Inizia”
A questo punto, dovresti vedere una schermata per lo più vuota poiché non hai ancora caricato alcun set di dati. Ciò è quanto faremo nella prossima lezione.
Prossimi step
Ora puoi iniziare a utilizzare AutoML Vision. Nel resto del corso, impareremo come utilizzarlo per ottenere il risultato desiderato: addestrare un modello di Machine Learning a riconoscere l'estrazione illegale di ambra.
Texty e JournalismAI hanno collaborato alla realizzazione di questo corso. Grazie a questa partnership, saremo in grado di utilizzare un campione delle effettive immagini satellitari utilizzate da Texty nell'indagine Leprosy of the Land.
Before we move forward, make sure to check the other AI and machine learning products offered by Google Cloud, including Natural Language, Translation, Speech-to-Text and Text-to-Speech, and much more.
-
Google Trends: migliorare i risultati della tua ricerca.
LezioneRestringi le tue ricerche per ottenere dati più utili. -
Looking ahead to ML-powered journalism
LezioneKey learnings and recommended resources to deepen your ML knowledge. -
Ricerca avanzata: cercare con precisione.
LezioneStrumenti e suggerimenti semplici per aiutarti a ottenere risultati migliori e più rapidamente.