Passer au contenu principal
Accéder au tableau de bord
Vous ne savez pas par où commencer ? Répondez à un bref questionnaire pour obtenir des recommandations personnalisées.
Leçon 2 sur 7
Témoignages de recherche et d’enquête fondées sur le Machine Learning
Hands-on Machine Learning
Google Cloud AutoML Vision.
Préparation des données
Évaluer et tester
Cours
0% terminé
5 minutes pour terminer

Témoignages de recherche et d’enquête fondées sur le Machine Learning

image23_2_o9fybYX.png
Comment utiliser le Machine Learning (apprentissage automatique) dans vos reportages ?
image23_2_o9fybYX.png

Le Machine Learning pour la recherche et les enquêtes : une étude de cas.

image23_2.png

En 2010, le prix de l’ambre sur le marché mondial a commencé à monter en flèche. En raison de la forte demande, dans les années suivantes, certaines régions du nord-ouest de l’Ukraine, riches en gisement d’ambre, ont attiré l’attention des marchés étrangers et locaux, et sont devenues le théâtre d’une « ruée vers l’ambre » illégale, un nouveau « Far West ».



Des centaines d’hectares de forêts et de terres agricoles ont été transformés en un paysage lunaire dépourvu de toute vie, l’activité minière la plus intense ayant lieu entre 2014 et 2016 mais se poursuivant les années suivantes.

image23_2.png

Leprosy of the Land, la Lèpre de la terre, une enquête de Texty

image5_2.png

En 2018, l’agence ukrainienne de datajournalisme Texty a publié Leprosy of the Land, ou la "Lèpre de la terre" en français, une enquête dans laquelle elle a utilisé des techniques de Machine Learning (apprentissage automatique) pour détecter des cas d’extraction illégale d’ambre dans toute l’Ukraine.



Tout d’abord, un algorithme a divisé des sections d’images satellites en sous-sections visuellement uniformes. Ainsi, si une image était moitié forêt verte et moitié champ de terre, elle était divisée en ces deux sous-sections.



Un autre algorithme a trouvé les sous-sections qui ressemblaient le plus aux exemples existants d’extraction d’ambre, qui présentent un motif de trous dans le sol ressemblant à une marque de poche. 



Enfin, les journalistes ont examiné les exemples trouvés par l’algorithme, pour s’assurer que ce qui ressemblait à de l’extraction d’ambre n’était pas en fait autre chose, comme la déforestation.


image5_2.png

Trouver des exemples d’exploitation illégale de l’ambre

image7_2.png

Dans ce cours, nous nous concentrerons sur les méthodes utilisées par Texty pour former un algorithme permettant de reconnaître des exemples visuels d’extraction illégale d’ambre dans une énorme quantité d’images satellites, préalablement divisées en sous-sections par un autre algorithme.



Comme mentionné dans la première leçon, nous allons donc expérimenter l’apprentissage supervisé. Vous apprendrez comment l’algorithme peut apprendre, à partir d’exemples étiquetés, à reconnaître le même motif dans des images qu’il n’a jamais vues auparavant. 



Vous apprendrez également comment reproduire le processus pour vos propres témoignages ou récits : de la recherche des exemples dont vous avez besoin, à la formation d’un modèle d’apprentissage-machine pour satisfaire votre recherche, puis au test et à l’évaluation du modèle visant à s’assurer qu’il produit des résultats fiables.


image7_2.png

Le ML est-il l’outil idéal pour ce problème ?

image12_3_TvhzWTX.png

Mais pourquoi le Machine Learning (apprentissage automatique) était-il l’outil par excellence pour trouver l’information recherchée par Texty ? 



La programmation classique exige que vous spécifiiez des instructions étape par étape à suivre par l’ordinateur. Si cette approche permet de résoudre une grande variété de problèmes, elle n’est pas à la hauteur pour reconnaître des exemples d’exploitation illégale de l’ambre dans une énorme quantité d’images satellites. Il existe tant d’éléments visuels que l’ordinateur devrait prendre en compte, qu’il est impossible de proposer un ensemble de règles étape par étape, capable d’apprendre au logiciel à distinguer les exemples réels d’extraction illégale d’ambre des éléments qui pourraient simplement lui ressembler.



Heureusement, les systèmes de Machine Learning permettent de résoudre ce problème.


image12_3_TvhzWTX.png

Focus sur le processus

image46_2.png

Gardez à l’esprit que ce que vous apprendrez dans ce cours - comment repérer l’extraction illégale de l’ambre - ne constitue qu’un exemple. Selon le même processus, l’apprentissage-machine permettrait de réaliser un certain nombre de tâches journalistiques diverses et pourrait même être appliqué à l’analyse de différents types de contenu, et pas seulement des images. Nous verrons d’autres cas d’utilisation à la fin du cours. Au fil de l’exercice, n’oubliez pas de vous concentrer sur le processus plutôt que sur l’étude de cas spécifique.


Avant de commencer l’exercice proprement dit, consacrons quelques minutes à la réunion et à la mise en place de l’outil que nous apprendrons à utiliser dans les prochaines leçons : Google Cloud AutoML Vision.

image46_2.png
Félicitations ! Vous venez de terminer Témoignages de recherche et d’enquête fondées sur le Machine Learning in progress
Recommended for you
Quelle note donneriez-vous à cette leçon ?
Vos commentaires nous aident à améliorer nos leçons en permanence.
Quitter et perdre la progression ?
Si vous quittez cette page, vous perdrez votre progression dans la leçon en cours. Voulez-vous vraiment continuer et perdre votre progression ?